SGM5 —Méthode des éléments finis Corrigé 6 -2020

Exercice 1

En raisonde la sourceponctuelled’énergie-chaleure domaine]0, 2/ doit étre décomposé

en deuxintervallesréguliers]0, /[ et]/, 2/[ pourlesquelson peutécrireles équationgliffé-
rentielles suivantes

-k [T (X)/dx?]+pT(x) = 0 0<x</
—K[PTX)/dX?]+0T(X) = 0  (<x<2/
avec la condition de continuité errx

Iim+ k[dT(x)/dX] — lim «[dT(x)/dx] = -Q
X0 B

X—PE

En intégrant séparément les deux fonctions résiduelles pondérées par une température virtuel-
le OT et en effectuant une intégration par parties, on trouve

A s -
jo [ (d?T/dx?) + pT]T dx = Io [K(dT/dx)(déT/dx)+,0T5I']dx—[/((dT/dx)éT]|g
sz [« (d?T/dx?) + oT]dT dx = sz [« (dT/dx)(dJT/dx) + pTAT]dx — [« (dT/dX) ST ]|%

La réunion des deux tron¢cons conduit a la forme intégrale du probleme

IS_[K(dT/dX)(doT /dx) + pTOT |dx + jff [ (dT/dx)(ddT/dx) + gTIT]dx

- [k (dT/dx)JT] |f)_ —[K(dT/dx)a‘T]ﬁﬂ =0 0 or
ou encore
J.o% [« (dT/dx)(ddT/dx) + pTAT ]dx =[x (dT/dx)JIT] |f)_ — [« (dT/dx)dr ]|§£+ =0 Oor
En insérant la condition de continuité dans cette expression, on obtient
_fjé [« (dT/dx)(ddT/dx) + pTAT ]dx + [« (dT/dx)IT] |X= 0
~[k(dT/dx)aT]| _,, —QaT(¢) =0  OdT

Notons que formellement il aurait été possible d’aboutir au méme résultat en insérant d’entrée
'impulsion de Dirac dans l'intégrale

gf [ (d*T/dx?) + pT —QJ,1dT dx = 0 0T
| se [K(T/dX)(dAT/dX) + ATAT ~ Q3 AT]dx ~ [« (dT/dx)IT]| Ez —o s
J-02€ [K(dT/dX)(ddr/dX)+pTaT]dX—QéT(€)—[K(dT/dx)aT”(zf = 0 asr

Comme les deux conditions aux limites
[/((dT/dx)]|X:O =t

[K(@TId)]| _,, = ~r T(20)
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sont de type naturel, elles doivent étre directement intégrées dans la formulation intégrale, ce
qui donne

jjg k (@ /o )T /ck )+ STIT Jck+tdT (0)+rT (/)3T (20)- QAT (¢) = 0 [0 JT

La forme faible revient ainsi a rechercher

TOU : | sé [k(dT/dX)(dAT/dX) + oTAT]dx + rT(20)T (27)
= —tIT(0)+QIT() DOOr OV

ou les classes de fonctions s’écrivent
U = ¥ = {w(x) | w(x) DH(0, 2¢)}

avec

HE00, 2) = (WO | [ Hawic)? + w2ldx <o)

Exercice 2
La forme forte du probleme a pour expression
$(x)OC?([0,7]) : -Gl (d®°@ldx®) = -m, 0 <x</
avec les conditions aux limites naturelles
Gly (o|¢/o|x)|X=O =0

Glp (dgidX)| _, = M,

La formulation intégrale associée s’écrit
js [-Gl, (d%@lak?) + m]opdx = 0 0op
ou o¢ dénote I'angle de rotation virtuel. Par intégration par parties, on trouve
js Gl (dgldx)(dog/dx) dx —[Gl, (dg/dx) o] |g = —J's mogdx  0og
Par insertion des deux conditions de bord naturelles (type Neumann), cette expression devient
js Gl , (dgfcx)(daplcx) dx — M, 3p(¢) = —js mdpdx  0&p
de sorte que la forme faible du probléme revient a rechercher
$0U : js Gl (dg/cx)(dopick)dx = M, Ip(0) —jg mdpdx 0 OV
avec les classes de fonctions suivantes
U == {wx)|w(x)DH{0, 1)}

ou west indifferemment I'angle de rotatighou sa contrepartie virtuellp.

Comme les deux conditions de bord sont naturelles pures (conditions de Neumann) et qu’au-
cun rappel élastique n'apparait dans la formulation, la solution et sa contrepartie virtuelle sont
définies a une constante pres. Les remplacements

2
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9 - p+c
o - op+d

ou cetd sont deux constantes satisfont dés lors aussi la forme faible

p0 U : ISGIp(d¢/dx)(d5¢/dx)dx = M,[J¢(¢) +d] —j(fmt(5¢+d)dx Od OV

En réarrangeant les termes, on peut écrire
‘ ‘ ‘
jo Gl, (d¢/dx)(d5¢/dx)dx+jo mgdx— M, dp(f) = d(Mt —jo m dxj 0 o9

ou le membre gauche de I'égalité est nul par définition de la forme faible. On trouve alors
I'équation de compatibilité que doivent vérifier les conditions aux limites

0= Mt—jsmtdx

dont on extrait la valeur du moment de tordirma I'extrémitéx = ¢/, compte tenu de Il'allure
du moment réparti i

‘ ‘X X 2
M; = jomdx = Io 47”?(1_Zjdx = 5,u€

Exercice 3

En choisissantin élémenfini a deuxpointsnodaux,lesfonctionsde basene pourrontcom-

porter que deux mondmes indépendants. Il est alors impossible de construire sur I'élément des
fonctions quadratiques a trois monémes qui respectent le critere de complétude ou complétion
(il existeune infinité de polynédmesdu deuxiemedegré prenantune valeur unitaire en un

nceud et s’annulant a l'autre). Il est alors nécessaire de rajouter un point nodal a I'élément qui
en comportera trois au total, autorisant trois monémes linéairement indépendants et, par con-
séquent, la construction de trois polyndmes quadratiques complets.

Prenant une valeur unitaire au nceud correspondant et une valeur nulle aux deux autres points

nodaux,les fonctionsde base’h; (i =1, 2, 3)d'un élémentquadratiquesont construitespar
produit normé de deux polynémes linéaires, conduisant a des polynémes dits de Lagrange. On
trouve ainsi

(6-¢) (€-4) _ (-1 (-0 _ 1

e = = = Z&(E-1
hl(f) (51_52) (51_53) (_1_1) (_1_0) 25(5 )
e _ (&) (6-43) _ (€+1) (6-0) _ 1
h,($) = = == 1
) = 6 ma) Gg) (L p1og) | 2°¢ D
eh3(<() — (g_gl) (5_52) — (5+1) ({_1) - 1_52

($3=41) (é3-¢3) (0+1) (0-1)
ou é = [-1, +1] est la coordonnée naturelle de I'elémerf et —1,& = +1 et& = 0 sont les
abscisses des trois points nodaux (dans I'ordre, nceuds d’extrémité, noeud central).

On relévera que ces fonctions sont différentiables a l'intérieur de I'élément fini et qu’elles
sont continues d’un élément a un autre puisqu’en un nceud d’extrémité elles valent O ou 1.
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