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Exercice 1 

En raison de la source ponctuelle d’énergie-chaleur, le domaine ]0, 2l[ doit être décomposé 
en deux intervalles réguliers ]0, l[ et ]l, 2l[ pour lesquels on peut écrire les équations diffé-
rentielles suivantes 
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avec la condition de continuité en x = l 
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En intégrant séparément les deux fonctions résiduelles pondérées par une température virtuel-
le δT et en effectuant une intégration par parties, on trouve 
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La réunion des deux tronçons conduit à la forme intégrale du problème 
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ou encore 
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En insérant la condition de continuité dans cette expression, on obtient 
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Notons que formellement il aurait été possible d’aboutir au même résultat en insérant d’entrée 
l’impulsion de Dirac dans l’intégrale 
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Comme les deux conditions aux limites 
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sont de type naturel, elles doivent être directement intégrées dans la formulation intégrale, ce 
qui donne 
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La forme faible revient ainsi à rechercher 
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T ∈ U  : 
2

0

l

[κ (dT/dx)(dδT/dx) + ρTδT ]dx + rT (2l)δT∫ (2l)  

= − tδT (0) + QδT (l) ∀ δT  ∈ V 

où les classes de fonctions s’écrivent 

U  =  V  =  { w(x) w(x)∈ H1(]0, 2l[)} 
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Exercice 2 

La forme forte du problème a pour expression 

(x) 2 ([0, ]) : GI (d2ϕ/dx2
l∈ C − p ) = − mtϕ 0 < x < l 

avec les conditions aux limites naturelles 
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La formulation intégrale associée s’écrit 
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où δϕ dénote l’angle de rotation virtuel. Par intégration par parties, on trouve 

=∫ GIp (dϕ/dx)(dδϕ/dx)dx − [GIp (dϕ/dx)δϕ ]
00 0

ll l

− ∫ mtδϕ dx ∀ δϕ  

Par insertion des deux conditions de bord naturelles (type Neumann), cette expression devient 
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de sorte que la forme faible du problème revient à rechercher 

ϕ ∈ U  :  ∫ GIp (dϕ/dx)(dδϕ/dx)dx = M t δϕ(l) − ∫
l

mtδϕ dx
00

l

∀ δϕ  ∈ V 

avec les classes de fonctions suivantes 

U  = V  =  {w(x) w(x) ∈ H 1(]0, l[)}  

où w est indifféremment l’angle de rotation ϕ ou sa contrepartie virtuelle δϕ. 

Comme les deux conditions de bord sont naturelles pures (conditions de Neumann) et qu’au-
cun rappel élastique n’apparaît dans la formulation, la solution et sa contrepartie virtuelle sont 
définies à une constante près. Les remplacements 
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c+→ ϕϕ
d+→ δϕδϕ

où c et d sont deux constantes satisfont dès lors aussi la forme faible 
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ϕ 
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∈ U  :  ∫ GIp (dϕ/dx)(dδϕ/dx)dx = M t [δϕ(l) + d ] − ∫
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En réarrangeant les termes, on peut écrire 
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où le membre gauche de l’égalité est nul par définition de la forme faible. On trouve alors 
l’équation de compatibilité que doivent vérifier les conditions aux limites 
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dont on extrait la valeur du moment de torsion Mt à l’extrémité x = l, compte tenu de l’allure 
du moment réparti mt, 

µ l
ll

ll

µ
3

2
d14

00
=







 −= ∫= ∫ x
xx

mt dxMt

Exercice 3 

En choisissant un élément fini à deux points nodaux, les fonctions de base ne pourront com-
porter que deux monômes indépendants. Il est alors impossible de construire sur l’élément des 
fonctions quadratiques à trois monômes qui respectent le critère de complétude ou complétion 
(il  existe une infinité de polynômes du deuxième degré prenant une valeur unitaire en un 
nœud et s’annulant à l’autre). Il est alors nécessaire de rajouter un point nodal à l’élément qui 
en comportera trois au total, autorisant trois monômes linéairement indépendants et, par con-
séquent, la construction de trois polynômes quadratiques complets. 

Prenant une valeur unitaire au nœud correspondant et une valeur nulle aux deux autres points 
nodaux, les fonctions de base 

e
hi (i = 1, 2, 3) d’un élément quadratique sont construites par 

produit normé de deux polynômes linéaires, conduisant à des polynômes dits de Lagrange. On 
trouve ainsi 
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où ξ = [–1, +1] est la coordonnée naturelle de l’élément et ξ1 = –1, ξ2 = +1 et ξ3 = 0 sont les 
abscisses des trois points nodaux (dans l’ordre, nœuds d’extrémité, nœud central). 

On relèvera que ces fonctions sont différentiables à l’intérieur de l’élément fini et qu’elles 
sont continues d’un élément à un autre puisqu’en un nœud d’extrémité elles valent 0 ou 1. 
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